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Abstract. Transition towards spatio-temporal chaos in one-dimensional interfacial patterns often involves
two degrees of freedom: drift and out-of-phase oscillations of cells, respectively associated to parity breaking
and vacillating-breathing secondary bifurcations. In this paper, the interaction between these two modes
is investigated in the case of a single domain propagating along a circular array of liquid jets. As observed
by Michalland and Rabaud for the printer’s instability [1], the velocity Vg of a constant width domain is
linked to the angular frequency ω of oscillations and to the spacing between columns λ0 by the relationship
Vg = αλ0ω. We show by a simple geometrical argument that α should be close to 1/π instead of the initial
value α = 1/2 deduced from their analogy with phonons. This fact is in quantitative agreement with our
data, with a slight deviation increasing with flow rate.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.20.Lz Secondary instability –
47.20.Ma Interfacial instability

1 Introduction

Many studies have been devoted to the dynamics of one-
dimensional patterns. One of the motivations is to seek
for an equivalent of the transition to turbulence in flu-
ids (see [2] for a recent exhaustive report). Coullet and
Iooss [3] have classified the possible behavior in terms
of secondary instabilities linked to broken symmetries.
Most of them have been observed in various experimen-
tal systems: Rayleigh-Bénard convection [4], directional
solidification [5–7], Taylor-Dean flow [8], Taylor-Couette
flow [9], directional viscous fingering between two eccen-
tric cylinders (“printer’s instability”) [1,10,11]. These be-
haviors are also recovered in numerical investigations of
partial differential equations governing interface instabili-
ties [12], and also by phenomenological models coupling a
base mode k and its first harmonic 2k [17].

Our group has investigated another experimental sys-
tem: a one dimensional array of liquid columns formed
below an overflowing circular dish (see Fig. 1a). This sys-
tem exhibits dynamical behavior [13–15] similar to those
observed in directional solidification or directional viscous
fingering. Typical examples of spatio-temporal diagrams
are displayed in Figures 2 and 3. As in references [13,14],
these diagrams were obtained from pictures of the dish
taken from above (see insert of Fig. 1a), and by recording
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grey levels along a circle intersecting every column trace.
Time runs from top to bottom, space (position along the
dish perimeter) is plotted on the horizontal axis.

Depending on the selected conditions (flow-rate, ini-
tial columns number, possible initial imposed motions),
different regimes occur, the most spectacular one being
the spatio-temporal chaos in Figure 2b. This behavior in-
volves a complex interaction between two elementary de-
grees of freedom. The first degree of freedom is called a
“vascillating-breathing” mode (Fig. 2a): adjacent columns
oscillate in phase-opposition, which doubles the spatial pe-
riod but preserves the (x,−x) symmetry. The second de-
gree of freedom is characterized by domains of asymmetric
cells that break the (x,−x) symmetry. This induces a drift
of the pattern [13–15].

These two bifurcations have motivated several ex-
perimental [5,6,11,13–15] as well as theoretical stud-
ies [3,12,16–19]. Among the latter, Misbah and
Valance [12] noticed that for small systems, the interac-
tion between these two modes may lead to temporal chaos.
Therefore a careful examination of this interaction in our
well controlled system is an essential step in the study
of the transition towards spatio-temporal chaos in an ex-
tended geometry. On the other hand, spatially chaotic
states are so complex that informations taken from regu-
lar behavior are to be preferred at the present stage. In
various systems, including our fountain experiment, the
vacillating-breathing mode is known to accompany the
propagation of a solitary drifting domain, which trailing
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Fig. 1. (a) The circular fountain experiment: a pattern of liq-
uid columns is formed below an overflowing circular dish. In-
sert: viewed from above, columns appear as U-shaped spots.
(b) Like in the printer’s instability [1], it is tempting to identify
the column array to a chain of springs and beads.

edge is often followed by transient oscillations. The inter-
action between a solitary parity broken domain and its
own oscillatory wake is thus the subject of this article.

2 Linking oscillation and drift: the phonon
analogy

The idea of a possible interaction between oscillations and
drift in 1D patterns is natural, but remains undiscussed
at least quantitatively by available theories. For instance,
models based upon the coupling between a base mode and
its second harmonic (“k-2k approaches”) are able to cap-
ture both behavior analytically [16] but, to our knowledge,
a solution involving a wall separating oscillations and drift
has never been proposed. The other well known approach
based upon symmetry considerations [3,18] leads to sets of
coupled phase and amplitude equations that are specific to
each state (oscillations and drift) and are therefore unable
to handle their interaction. Gil [19] recently showed that
solitary drifting domains followed by an oscillatory wake
can be recovered when spatial phase shifts between a base
mode and a bifurcated oscillatory mode are considered.
However, this study remained only qualitative.

On the other hand, quantitative evidences of such an
interaction were reported by Michalland and Rabaud for

(a)

(b)

Fig. 2. Spatio-temporal diagrams (I). (a) An oscillating regime
(VB) extended on the whole dish (Γ = 0.31 cm2/s, duration:
20 s). (b) Regime of spatio-temporal chaos. Interactions be-
tween oscillations and drift sustain disorder (Γ = 0.39 cm2/s).

the printer’s instability [1] and confirmed by further inves-
tigations on the fountain experiment [13,15]. These works
all mention a relationship linking the velocity of the do-
main walls Vg to the angular frequency ω of the tran-
sient oscillations left behind and the spacing λ0 between
columns (defined outside of the propagating domain):

Vg = αλ0ω (1)

where α was found in a range from 0.36 to 0.4. To interpret
qualitatively this result, Michalland and Rabaud [1] sug-
gested an analogy with the propagation of dilation waves
on a lattice of springs and beads (Fig. 1b). This “phonon
approach” may seem particularly relevant in the case of
liquid columns since this pattern appears as composed of
discrete localized singularities [15]. The numerical simu-
lation of spring and mass lattice submitted to a sudden
motion of a boundary indeed reveals the propagation of di-
lation waves that exhibits a structure qualitatively similar
to that of our drifting domains, although they are damped
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Fig. 3. Spatio-temporal diagrams (II). (a) and (b) Transient
oscillations following a dilation wave (PB mode) (duration =
15 s). At low flow-rate (Γ = 0.11 cm2/s), the VB mode is
strongly damped (a). At higher flow-rate(Γ = 0.29 cm2/s),
its lifetime reaches one period of rotation of the domain (b).
Inserted, a magnified view. The dotted line linking the maxima
of column oscillations indicates the deviation to a perfect phase
opposition between neighbouring columns.

by dispersion on long time scales (Figs. 3a and b). The
velocity of these “domains” and the angular frequency of
oscillations are linked by a relationship identical to (1),
where λ0 is the spacing between each mass, but with α =
1/2.

Though this was not explained in details in [1], this
value of 1/2 can be deduced from the dispersion relation
of phonons ω = 2(K/m)1/2 sin |ka/2| governing the propa-
gation of waves on the lattice xn = exp i(kna−ωt) (where
k is the wavenumber, a = λ0 the lattice spacing, K the
spring stiffness and m the mass of each “atom”). Within
this framework, the domain velocity Vg is identified to the
group velocity of phonons defined in the long wavelength
limit (k → 0), while the frequency of oscillations is identi-
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Fig. 4. Idealized geometry involved at the rear front of a prop-
agating parity broken domain, where the drift has to match
with transient oscillations.

fied at the boundary of the first Brillouin zone (k = π/a),
a limit which corresponds to spatial-period doubling.

This approach has the merit to provide a simple in-
terpretation of (1). However it is presumably incorrect,
since α = 1/2 is inconsistent with the measured values
(0.3 to 0.4). As recognized in [15], including non-linearities
and dissipation in an improved “phonon” model does not
solve this problem. This is puzzling because Michaland
and Rabaud argument is rather natural and very general.

Qualitatively, we think that a different coefficient
is dictated by a presumably non-linear effect: a phase-
matching condition between oscillation and drift.

3 Geometrical argument

A close examination of spatio-temporal diagrams (Fig. 3)
shows that there is a strong tendency for phase opposi-
tion between nearest neighbours in the transient oscilla-
tory wake. The phonon model does not impose such a
condition. We think this is the only reason for the dis-
crepancy and postulate that columns oscillate in perfect
phase-opposition with nearest neighbours in the oscilla-
tory wake as usually assumed for a pure vascillating-
breathing mode [3,12]. An idealized sketch of the column
motions involved at the rear of a drifting domain is sug-
gested in Figure 4a. In order to obtain a stationary struc-
ture propagating uniformly with time, half a period of
oscillations π/ω must be equal to the time it takes to the
rear wall of the drifting domain to cover the spacing λ0

between two oscillating columns λ0/Vg. This geometrical
argument leads to:

Vg =
1
π
λ0ω (2)

and hence to α = 1
π . Our argument can also be stated as

follows: since trajectories in the (x, t) plane should be con-
tinuous, Vg must be equal (in absolute value) to the phase
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velocity of oscillations Vφ = ω/k, where k, the wavenum-
ber of oscillations, is equal to π/λ0 when neighbouring
cells oscillate in phase opposition. A similar idea is also
perhaps underlying phase matching conditions invoked to
describe defect motions in cellular patterns [20].

4 Experimental setup

The experimental setup is simple: silicon oil (viscosity
η = 100 cP, surface tension γ = 20 dyn/cm, density
ρ = 0.97 g/cm3 at 20 ◦C) overflows from a horizontal cir-
cular dish (Fig. 1a) at constant flow-rate per unit length Γ .
For Γ between 0.05 cm2/s and 0.6 cm2/s, the liquid self-
organizes as a pattern of liquid columns. This pattern re-
sults from a Rayleigh-Taylor instability combined with a
constant liquid supply. It may bifurcate towards secondary
instabilities, which lead to the phenomenology displayed
in Figures 2 and 3.

As explained above, these spatio-temporal diagrams
are built from pictures taken from above by a video cam-
era, the fountain being lighten by a circular neon tube (see
insert of Fig. 1a). Columns then appear as U-shaped spots,
moving along a circle of radius R = 4.8 cm slightly smaller
than that of the dish (5 cm here). The diagrams are ob-
tained by recording grey levels along this circle. Thanks
to capillary effects, the columns can be manipulated. One
can adjust their number and their initial motion just by
touching them with needles. The rapid coalescence of sev-
eral columns with another one moving at constant speed
induces a locally heterogeneous pattern, in which a “dila-
tion wave” followed by damped oscillations (or more rigor-
ously a drifting parity broken domain) propagates around
the dish.

As shown in Figures 3a and b, the length of the oscil-
latory wake increases with flow-rate which makes possible
accurate frequency measurements. We have systematically
studied such domains, varying the flow rate Γ per unit
length, and we have investigated the evolution of their wall
velocity Vg, as well as that of the angular frequency ω and
wavelength λ0 left behind.

5 Experimental results and discussion

The velocity of domain walls Vg is plotted versus flow-rate
in Figure 5a. Data are well fitted by a power law, with
an exponent close to 0.5, which suggests a relationship:
Vg ∼ √

Γ .
Measurements of the angular frequency ω of transient

oscillations left behind the propagating domains are plot-
ted in Figure 5b versus flow-rate per unit length Γ . At
a few percent of accuracy, this frequency is very close to
that of global oscillations (black symbols) such as those
in Figure 2a. As in previous works [13–15], ω increases
with Γ .

Figure 5c shows measurements of the wavelength out-
side a propagative domain (λ0). This length does not
vary with flow-rate, neither with domain size. Its value
is around 1.08 cm.
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Fig. 5. (a) Measurements of domain walls Vg versus flow-rate.
The dotted line provides a fit with power law, with an exponent
of close to 0.5. (b) Angular frequency of transient oscillations
left behind a drifting domain (open symbols) and in an ex-
tended oscillating state (black symbols) versus flow-rate per
unit length. The fit traces a square root law with a thresh-
old. (c) Wavelength λ0 outside a propagative domain, versus
flow-rate, for several domain size.
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Despite the obvious limitations of such an approach, it
is here interesting to confront this result to the “phonon
analogy”. In this point of view, assuming an effective
column mass proportional to Γ , this analogy would im-
ply that the effective stiffness K could scale as Γ 2. This
dependence is compatible with an interaction between
columns through inertial terms of Navier-Stokes equation,
the Reynolds number Re = Γ/ν being here of order 1.

In Figure 6a, we have plotted the values of Vg ver-
sus λ0ω. The slope appears to be very close to 1/π, at
low flow-rates, in agreement with equation (2), and seems
to become slightly larger when the flow-rate increases. In
fact the situation is more complicated. As appears in Fig-
ure 6b, there is a systematic difference between Vg and
λ0ω, that increases linearly with Γ , following the empiri-
cal law:

Vg

λ0ω
− 1
π

=
Γ − Γc

D
(3)

D has the dimension of a diffusion coefficient. Its value is
around 4.6 cm2/s. The threshold Γc is around 0.06 cm2/s.

The effective value defined by αeff = Vg/λ0ω varies
from 0.31 to 0.38 linearly with flow-rate. The “ideal” sit-
uation α = 1/π implied by the argument suggested in
Figure 4a only occurs close to the limit flow-rate Γc =
0.06 ± 0.01 cm2/s. It is interesting to note that this limit
flow rate nearly coincides with the critical threshold of
appearance of oscillations (Fig. 5b). Indeed, angular fre-
quency measurements are correctly fitted by the following
law:

ω = ω0 + ω1

√
Γ − Γc

D
. (4)

This is consistent with a Hopf bifurcation. If this really
holds, it would suggest that (1) only holds in the limit of
a vanishing oscillation amplitude, the deviation from 1/π
being intrinsically non-zero for any flow rate.

Finding α = 1/π instead of 1/2 shows that the liquid
column array and an equivalent spring and beads system
are rather different in the details although the analogy
can perhaps be useful to get reasonable scaling laws. As
we have explained, the value found for α seems to be dic-
tated by: (1) a strong tendency for neighboring columns to
oscillate in perfect phase opposition and (2) a “coherence”
condition between the wall motions and the oscillations.
In terms of Fourier analysis the first condition can be ex-
pressed by k = π/λ0, i.e. the system lies at the boundary
of the first Brillouin zone.

The second condition reads Vg = Vφ = ω/k, i.e. the
velocity of the domain walls must be equal to the phase
velocity of the oscillations. The first condition is rather
reasonable if we think in terms of secondary bifurcations
of a dissipative pattern. Near the threshold of oscillations,
we can speculate that a single wavevector and a single
frequency are selected. In some sense this mode is the
sole excited eigenmode of the problem, whereas in a lat-
tice of springs and beads, any eigenmode involved in the
dispersion relation can contribute to the oscillatory wake
following a dilation wave. Since α differs from 1/π with in-
creasing flow-rate means that at least one of these two con-
ditions is progressively relaxed. A careful examination of

the spatio-temporal diagrams has convinced us that only
the first condition is violated, the second one holding at
any value of the flow rate.

This is clearly visible on the insert of Figure 3b.
Isophase lines linking second neighbours are slightly in-
clined, while the structure of the trajectories remains con-
sistent with the qualitative picture of Figure 4a. To be
more quantitative, we have plotted in Figure 6c the path
followed by the system in the plane (k, ω) when Γ is in-
creased. Here we recall that ω designates the frequency
of the transient oscillations, while k is their wave vec-
tor (which is different from the wave vector of the pat-
tern k0), so that locally the column position varies as
exp[i(kx−ωt)]. The black symbols are obtained by direct
determinations of k on spatio-temporal diagrams across
slope measurements of the isophase line linking second
neighbors (dotted line in Fig. 3a). This slope ψ reads:

tanψ =
1
ω

(k − π/a). (5)

The open symbols are obtained by using the relation-
ship k = ω/Vφ, and assuming Vφ = Vg. The fact that both
kind of symbols overlap shows that for any value of Γ , the
relationship Vφ = Vg holds. Since the flowrate Γ increases
from right to left of this graph, the wave number k of per-
turbations of columns positions is equal to π

λ0
= 2.9 cm−1

at low flow rate and progressively decreases when Γ in-
creases. In other words, the system initially lies at the
boundary of the Brillouin zone, and as Γ increases, k be-
comes smaller than π/λ0, the perfect phase opposition is
progressively lost.

6 Conclusions - Conjectures

In summary, this paper reports accurate measurements
which allow us to evidence a fundamental relationship
linking the velocity of a propagating parity broken do-
main to the frequency of its oscillatory wake. At a few
percent of accuracy, this pulsation coincides with that of
the oscillatory mode itself observed alone in an extended
geometry (Fig. 5b), which suggests that it is finally this
oscillatory mode that rules the propagation of parity bro-
ken domain. Similarities and differences with phonons on
a lattice of springs and beads have been discussed in the
plane (k, ω), the residual oscillations exhibiting a possible
shift of the wavenumber k with respect to the boundary
of Brillouin zone of order of 20% of the maximal k value.

We believe that the problem addressed in this arti-
cle is important for several reasons. First, models based
upon symmetry arguments [3] miss the relationship repro-
duced in equation (2). In this approach, ω is just a free
parameter that is selected at will to rebuild the spatio-
temporal diagrams starting from the amplitude evolu-
tions. This suggests that improvements of this approach
must be built [19]. In another direction, it is to note that
k-2k models [16,17] are able to capture both oscillations
and drift. Therefore, a possible promising other idea to in-
terpret our result would consist in building a model of the
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Fig. 6. (a) Velocity of propagative domains versus the quantity
λ0ω with ω = 2π/T . (b) Difference between Vg/(λ0ω) and 1/π
versus flow-rate per unit length. (c) Evolution in the plane
(k, ω) where k is the wavenumber of the representative points
of the residual oscillations. Flow rate Γ increases from right
to left, from Γ = 0.076 cm2/s for k = 2.83 cm−1, to Γ =
0.36 cm2/s for k = 2.31 cm−1. Black circles are based upon
direct k measurements from spatio-temporal diagrams, while
open symbols stand for values deduced from k = ω/Vg. The
two points inside the circle correspond to negative values of
Vg/λ0ω − 1/π.

wall separating oscillations and drift by starting from Car-
oli et al equations suggested in reference [17]. This could
constitute a better framework to recover equation (1) by
a rigorous calculation.

Next, the point investigated here has something to
do with an insufficiently studied problem, i.e. that of
Galilean invariance in pattern dynamics. For instance,
Coullet and Fauve [22] studied the effect of this invari-
ance on a Ginzburg-Landau-like equation and discussed
the consequences for systems in which this invariance is
slightly broken by rigid boundary conditions. Another pa-
per from Shraiman [21] is also available in the case of
the Kuramoto-Shivashinsky equation. Both papers show
that, in such systems, a phase dynamics of second order
in time should be observed. This second order time dy-
namics is an alternative to the idea to invoke a column
or cell inertia. Finally, this subtle interaction between os-
cillations and drift is certainly important in the genesis
of spatio-temporal chaos, because it can influence the nu-
cleation process of defects, via “shock” formations in the
phase field. We hope that our paper will motivate further
studies in this field.
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